

Aobo Li ACFI/Snowmass workshop

THE UNIVERSITY

of NORTH CAROLINA

at CHAPEL HILL

COMPUTER VISION

- ➤ Machine learning that focus on analyzing images
- ➤ Compatible with monolithic detector with many spatially correlate photosensors
 - ➤ Large Scale LS detector
 - ➤TPC detector
- ➤ Convolutional Neural Network (CNN) and its variant is the most popular model
- ➤ Versatile for many kinds of tasks:
 - ➤ Particle Identification
 - ➤ Cherenkov/Scintillation seperation
 - ➤ Track Labeling via Semantic Segmentation
- ➤Performance improves with better detector hardware

10.1016/j.nima.2019.162604

NATURAL LANGUAGE PROCESSING

➤ Machine learning that focus on analyzing time sequence (waveform)

- Compatible with granular detector that outputs a single waveform
 - **≻**Bolometer
 - ➤Germanium Detector
- ➤ Possible model: RNN based model, 1D

 CNN model, Attention based model
- >Applications: PID, waveform transformation

GENERATIVE MODEL

➤ Generative Adversarial Network & Variational Auto-encoder

- ➤Training GAN:
 - ➤ Train generator to generate fake images that "fool" the discriminator
 - ➤Train discriminator to classify fake images from real images
- ➤Generating MC simulations that are indistinguishable from true detector events

INTERPRETABILITY

- ➤The ability to explain decisions of a machine learning models
- ➤ Tradeoff between accuracy and interpretability
- ➤ Tree-based model gains attention on interpretability
- ➤ Black-box explainer: explain regardless the type of models
- ➤ Positive reciprocal relation between classical model and interpretable machine learning model

